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Abstract
In the first section of this paper, we show that the functions in involution of the
Gelfand–Cetlin system can be obtained from a λ-parametric Lax equation.
In the second section, we observe that the Gelfand–Cetlin system has no
obstructions to global action–angle coordinates, and we give an explicit
expression of global (action) angle coordinates. In the third section, we
remark the fact that the Gelfand–Cetlin system is obtained via a nesting of
superintegrable systems, and show they all present a non-vanishing Chern
class.

PACS numbers: 02.30.Ik, 02.40.Vh, 45.20.Jj
Mathematics Subject Classification: 37Kxx, 37J30, 37J35

Introduction

The Gelfand–Cetlin system is a completely integrable system well known in the community
of symplectic geometers. The symplectic manifold On hosting this system is a regular U(n)-
coadjoint orbit, and the functions in involution, functionally independent in O′

n, an open subset
of On, are the eigenvalues of a family of nested minors.

A completely integrable system gives rise to a possibly singular torus fibration. Once the
subset of singular fibres is excised, the torus bundle gives rise to cohomology classes—the
obstructions to global action–angle coordinates. In the case of the Gelfand–Cetlin system,
all obstructions to global action–angle coordinates vanish; we will provide, in section 2, the
expression of global angles (the global actions being the eigenvalues).

In the third section, we will consider the superintegrable systems used to obtain the
Gelfand–Cetlin completely integrable system. This superintegrable system is defined in O′′

n ,
an open dense subset ofOn strictly larger thanO′

n. The superintegrable Gelfand–Cetlin system
presents an obstruction to global angles that is represented by a non-vanishing Chern class.

Given a dynamical system on a Lie algebra one can try, following Manakov [14], to
produce integrals of motion of the system by writing the equations of motion as a λ-parametric

0305-4470/02/4910591+15$30.00 © 2002 IOP Publishing Ltd Printed in the UK 10591

http://stacks.iop.org/ja/35/10591


10592 A Giacobbe

Lax equation, and using the conservation laws associated with all ODEs written in commutator
form. In the first section, we produce a Lax equation for a suitable dynamical system on a
regular U(n)-coadjoint orbit, and we show that this equation produces precisely the functions
in involution of the Gelfand–Cetlin system.

1. Gelfand–Cetlin system and Lax equations

1.1. Complete integrability

In the classical definition of completely integrable system, one assumes as given a 2d-
dimensional symplectic manifold with d independent Poisson-commuting functions. The
class of completely integrable systems has been extended by Nekhoroshev [15] to the non-
commutative case—more than d functions but non-trivial Poisson-commutation relations—and
has been finally presented by Fomenko and Mischenko [9] in the form we will be using. A
completely integrable system is a Poisson submersion

(Kn →)M2d → P 2d−n

of a symplectic manifold M onto a regular Poisson manifold P of rank 2d − 2n, with compact
and connected fibres K. We recall that most authors call a completely integrable, a system for
which d = n (P has a trivial Poisson structure), and call superintegrable or non-commutatively
integrable a system for which d > n (P has a non-trivial Poisson structure). We also recall
that a regular Poisson manifold is a Poisson manifold whose bivector field has constant rank.

To distinguish between this purely geometrical set-up of complete integrability and the
environment in which this theory acquires its full significance, we will call a completely
integrable dynamical system a completely integrable system with a given Hamiltonian function
f on M that Poisson-commutes with the pull-back of any function on P. What makes
completely integrable dynamical systems so interesting is that they often appear in physical
problems (see [7]), and their evolution can be easily described.

Theorem (action–angle coordinates [4, 9]). Given a completely integrable dynamical system,
every point of M has an open neighbourhood U, saturated with respect to the projection on P,
and coordinates (p, q, a, ϕ) : U → R

d−n
p × R

d−n
q × R

n
a × T n

ϕ such that the symplectic form is

σ = dpr ∧ dqr + dai ∧ dϕi

and the evolution over time of the dynamical system defined by the symplectic gradient of f is
expressed by the equations

ȧ = 0 ṗ = 0 q̇ = 0 ϕ̇ = ωf (a).

It is well established to call action functions the functions a, angle functions the circle-
valued functions ϕ, and frequencies’ map the function ωf .

1.2. The Gelfand–Cetlin system

Let U(n) be the group of unitary matrices; its Lie algebra u(n) is the vector space of skew-
Hermitian matrices, while its dual Lie algebra u∗(n) can be canonically identified with the
space of Hermitian matrices iu(n), the natural duality between u(n) and iu(n) being given by
the formula

〈H,A〉 = i Tr HA.
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The generic regular coadjoint orbit in iu(n) is an orbit through the matrix diag
(µ1, . . . , µn), for some real numbers µ1 < · · · < µn; we will denote such a coadjoint
orbit by On. The manifold On has dimension n(n−1), and the vectors tangent to On at a point
H are of the form adXH = [X,H ], with X an element of u(n) (a skew-Hermitian matrix).

Every dual Lie algebra g∗ has a canonical Poisson structure, called the Lie–Poisson
structure, whose symplectic leaves are the G-coadjoint orbits. The Lie–Poisson symplectic
structure of the manifold On can be expressed with the very simple formula

σH

(
adX1H, adX2H

) = i Tr(H [X1,X2]).

What is commonly called the Gelfand–Cetlin system was introduced by Thimm [18] (see
also [11]) as a (commutative) completely integrable system defined onOn—a regular coadjoint
orbit of the group U(n). In this system, the functions in involution are the coefficients of the
characteristic polynomials of a family of nested principal minors. To be more precise, let H
be an element of On. By H(i) we denote the principal minor of H obtained by cancelling
the last n − i rows and last n − i columns. By τ i

j we denote the coefficient of the (i − j)th
power of the variable in the characteristic polynomial of the matrix H(i). The functions τn

j (H)

are constant along the coadjoint orbit, and will be denoted simply by τj (H). By µi
p we

denote the ordered
(
µi

p � µi
p+1

)
eigenvalues of H(i), with vi

p their respective eigenvectors.

To compactify notations, we shall write �τ for
(
τ 1

1 , τ 2
1 , τ 2

2 , . . . , τ n−1
1 , . . . , τ n−1

n−1

)
and �µ for(

µ1
1, µ

2
1, µ

2
2, . . . , µ

n−1
1 , . . . , µn−1

n−1

)
.

The regular points of �τ are precisely the set in which �µ is smooth. We will denote by O′
n

the subset of On in which the function �µ is smooth; so that the Gelfand–Cetlin completely
integrable system is the fibration O′

n → R
n(n−1)/2 with �µ as projection map.

The minimax theorem can be used to obtain conditions on the possible values of the
functions µi

j ; such conditions are referred to as the Gelfand–Cetlin pattern. The statements
in this proposition are either proved in [11] or are trivial.

Proposition 1.1. Let H be a Hermitian matrix and µi
p the ordered eigenvalues of H(i), then

note the following:

• The eigenvalues must satisfy the inequalities

µi+1
p � µi

p � µi+1
p+1.

• The above inequalities define the image of the smooth map �µ. In other words, the image
�µ(O′

n) is the set
{(

µi
p

)∣∣µi+1
p < µi

p < µi+1
p+1

}
. Therefore, the set �µ(O′

n) is diffeomorphic to
the set (0, 1)n(n−1)/2 (by a polynomial map).

• The smooth functions µi
p are functionally independent precisely on O′

n ⊂ On, where O′
n

is the open dense subset of On defined by the inequalities

µi+1
p < µi

p < µi+1
p+1.

One last requirement the submersion �µ : On → R
n(n−1)/2 has to satisfy to define

a completely integrable system is that its pre-images must be compact and connected.
Compactness is obvious, connectedness can be proved with a straightforward argument.

Lemma 1.2. The pre-images of �µ (and so those of �τ ) are connected.

Proof. The proof of this fact can be obtained by induction on n. If n = 1 then the statement
is trivially true. Let A and B be matrices of order n, with the same eigenvalues and such that
�τ(A) = �τ (B). By inductive hypothesis, one knows that there exists a path U(t) in U(n − 1)
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such that U(0) = 1, U(1)∗B(n−1)U(1) = A(n−1) and �τ (U(t)∗B(n−1)U(t)) ≡ �τ (A(n−1)). We
are left to show that there exists a path connecting the matrices(

A(n−1) a

a∗ an,n

) (
A(n−1) b

b∗ bn,n

)
.

The condition that the eigenvalues of the two matrices are the same, imposes that
an,n = bn,n and that b = diag(eiϑ1 , . . . , eiϑn−1)a. The path of matrices that allows us to
conclude is

t 
→
(

A(n−1) diag(eitϑ1 , . . . , eitϑn−1)a

diag(eitϑ1 , . . . , eitϑn−1)a∗ an,n

)
. �

1.3. The equation in commutator form

Beginning in the mid-1960s, particular attention has been given to the first-order differential
equation which can be written in the form Ṁ = [L(M),M], with M an element in some
algebra of matrices g and with L a function from g to g. Equations of this kind are called
Euler–Arnol’d equations, or Euler–Poincaré equations or equations in commutator form.

It is a remarkable observation of Arnol’d [2] that, when a Lie algebra g admits an Ad-
invariant scalar product—and hence a G-equivariant isomorphism between the Lie algebra
and its dual—any Hamilton equation defined on the dual Lie algebra endowed with its Lie–
Poisson structure can be rewritten on the Lie algebra in commutator form. For the sake of
completeness, we include the short proof of this fact.

Lemma 1.3([2]). Assume that a Lie algebra g has a non-degenerate Ad-invariant scalar
product (−,−). Then, the isomorphism between g and g∗ allows one to write the Lie–Poisson
structure in g∗ as a Poisson structure in g. The symplectic leaves of such a structure are the
adjoint orbits, the space tangent to the symplectic leaves at a point M is spanned by the vectors
adXM = [X,M] and, if M,X, Y are elements of g, the symplectic form of the leaf through M
is the bilinear map

σM([X,M], [Y,M]) = (M, [X,Y ]).

Let f be a function defined on g, then the Hamilton equation

Ṁ = f g(M)

can be rewritten in commutator form as

Ṁ = [∇f (M),M]

where ∇f (M) is the gradient vector field defined by (∇f (M),N) = 〈df (M),N〉 and f g is
the Hamiltonian vector field obtained by contracting the Lie–Poisson structure of g with the
1-form df .

Proof. All we have to show is that, for any X in g,

σM(f
g
(M), [X,M]) = σM([∇f (M),M], [X,M]).

The left-hand side, using the definition of σ , is 〈df (M), [X,M]〉; by definition of
gradient this is equal to (∇f (M), [X,M]). The right-hand side, using the definition of
σ , is (M, [∇f (M),X]), which is, by Ad-invariance, ([X,M],∇f (M)). �

Once a system is written in commutator form, one can compute some integrals of motion.
In fact, the vector [L(M),M] is tangent to the adjoint orbit at M. Hence, the eigenvalues of the
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time-dependent matrix M are independent of t. One can push this idea one step further, and
try to obtain other integrals of motion representing1, if possible, an Euler–Poincaré–Arnol’d
equation in the form of a λ-parametric Lax equation, also called λ-parametric deformation of
the Euler–Poincaré–Arnol’d equation.

A Lax equation is a first-order differential equation Ṁλ = [Mλ,Nλ] with Mλ and Nλ

polynomials in λ with coefficients in a Lie algebra. The integrals of motion can be obtained
using the fact that the characteristic polynomial of the time-dependent matrix Mλ is an invariant
of motion. This means that the characteristic polynomial (detMλ − µI) is a polynomial in
λ,µ whose coefficients are constants of motion.

Lax equations have been used to produce integrals of motion for various dynamical
systems: the Euler–Poinsot top [14], the Toda lattice [1], the Lagrange and symmetric top
[16, 17], and some others. The goal of the next two subsections is to define a
Hamiltonian in On whose Hamilton equation can be written in Lax form, and to obtain
the action functions of the Gelfand–Cetlin system as integrals of motion of that Hamiltonian
system.

1.4. A Hamiltonian for the Gelfand–Cetlin system

We will now determine a Hamiltonian function whose Hamiltonian flow is T n(n−1)/2-dense.
It is best to seek the Hamiltonian among functions that are low-degree polynomials in the
coefficients of H. The U(n − 1)-equivariant linear Hamiltonians have periodic flows; the next
simplest Hamiltonians are quadratic polynomials in the coefficients of H.

Proposition 1.4. Let O be a regular U(n)-coadjoint orbit and let

f : O → R H 
→ Tr(H (n−1))2 + Tr(H (n−2))2 + · · · + Tr(H (1))2. (1)

Then f commutes with all the functions of the Gelfand–Cetlin completely integrable system
and its Hamiltonian flow is a T n(n−1)/2-dense dynamical system.

Proof. Once observed that the Hamiltonian f is nothing other than the function f (H) =∑(
µi

p(H)
)2

, one can use the theorem on action–angle coordinates which states that, given
a Hamiltonian function f commuting with the functions of a completely integrable system,
and chosing a family of local action–angle coordinates (a, ϕ) for this system, the Hamilton
equation associated with f is

ȧ = 0 ϕ̇ = ωf (a).

In our case, the period function is

ωf

(
µn−1

n−1, . . . , µ
1
1

) = (
2µn−1

n−1, . . . , 2µ1
1

)
and its Jacobian is two times the identity matrix, which has maximal rank at every point
of O′

n. �

1.5. The Lax equation

We have shown that f , the quadratic Hamiltonian in (1), defines a flow which is generically
dense in the Lagrangian torus-foliation called ‘the Gelfand–Cetlin system’. Applying

1 The word representing is purposely vague, since the technique to obtain a Lax equation from an Euler–Poincaré–
Arnol’d equation needs to be invented case by case.
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lemma 1.3 to this function, one obtains that ∇f (H) = L(n−1)(H ) + · · · + L(1)(H ), where
L(j) is the linear map from u(n) into itself such that

L(j)(H ) =
(

H(j) 0
0 0

)
.

The Hamilton equation associated to f can be written in commutator form as

Ḣ = [L(n−1)(H ) + · · · + L(1)(H ),H ]. (EPA)

The dynamical system (EPA) admits a λ-parametric isospectral deformation, which is

(H + λL(n−1)(In))
• = [L(n−1)(H ) + · · · + L(1)(H ),H + λL(n−1)(In)]. (Lax)

It is in fact obvious that [L(j)(H ), λL(n−1)(In)] = 0 for every j , and (H +λL(n−1)(In))
• = Ḣ .

These equations imply the identity of the two ordinary differential equations (EPA) and (Lax).
It follows that the characteristic polynomial of the λ-dependent matrix H + λL(n−1)(In)

is an invariant of motion. Hence, its eigenvalues are invariants of motion. In particular, the
product of the eigenvalues, which is a polynomial of degree n in λ, has n − 1 non-trivial
coefficients of the powers of λ that are integrals of motion.

Lemma 1.5. From equation (Lax) it follows that the functions τn−1
i (H ), i = 1, . . . , n − 1 are

integrals of motion of the Hamiltonian system

Ḣ = f g(H)

where f is the function in proposition 1.4.

Proof. The coefficients of the characteristic polynomial of the matrix H + λL(n−1)(In) are
polynomials in λ and are integrals of motion for the dynamical system. It follows that the
coefficients of the powers of λ in these polynomials are integrals of motion for the Hamiltonian
system.

Using notation previously defined,

τn(H + λL(n−1)(In)) = τn(H) + λ
(
τn−1(H) − τn−1

n−1 (H)
)

+ · · · + λi
(
τn−i (H ) − τn−1

n−i (H )
)

+ · · · + λn−1 (
τ1(H) − τn−1

1 (H)
)
.

This term alone gives the integrals listed in the lemma. The other coefficients of the
characteristic polynomial are

τn−j (H + λL(n−1)(In)) =
∑

1�i1<···<ij−1<n

τn−j (H
Î,n + λIn−j )

+
∑

1�i1<···<ij <n

τn−j (H
Î + λL(n−j−1)(In−j )) = · · ·

(the letter I represents the list of numbers i1, . . . , ij , by HÎ we denote the minor obtained from
H by cancelling rows and columns corresponding to the indices in I)

· · · = τn−j (H) + λ

((
j + 1

1

)
τn−j−1(H) − τn−1

n−j−1(H)

)
+ · · ·

+ λl

((
j + l

l

)
τn−j−l (H ) − τn−1

n−j−l (H )

)
+ · · ·

+ λn−j−1

((
n − 1

n − j − 1

)
τ1(H) − τn−1

1 (H)

)
+ λn−j .
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These polynomials do not give any new integral of motion, since their coefficients involve
combinations of τj (H) and τn−1

j (H). �

This result cannot be considered satisfactory, since we obtained n− 1 integrals of motion
for a system with n(n − 1)/2 degrees of freedom. We will hence rewrite the Hamiltonian
system in commutator form on a different Lie algebra, write a λ-parametric perturbation of
it, obtain n(n − 1)/2 integrals of motion, and observe that such integrals are the involutory
functions of the Gelfand–Cetlin system.

Lemma 1.6. The Lie algebra u(n) can be identified (as a vector space) with the subset S of
⊕n

j=1u(j) ⊂ u(n(n − 1)/2) consisting of all the matrices of the form

H =




H 0 0 0
0 H(n−1) 0 0

0 0
. . . 0

0 0 0 H(1)




with H a skew-Hermitian n × n matrix.

This statement does not require any proof. What needs some explanations is the following:

Lemma 1.7. The Euler–Poincaré–Arnol’d equation in On associated with the Hamiltonian f

can be rewritten on the vector space S as

Ḣ =







L(n−1)(H )+
...

+L(1)(H )

0 0

0

L(n−2)(H (n−1))+
...

+L(1)(H (n−1))

0

0 0
. . .




,H




. (EPA′)

(Here, L(i) sends a j × j matrix H to the j × j matrix having i × i minor equal to H(i) and
null entries otherwise.)

Proof. From now on, we will denote the skew-Hermitian matrix in the left entry of the Lie
bracket in (EPA′) by L∗(H).

The dynamical system (EPA′) is well defined in the vector space u(n) ⊕ · · · ⊕ u(1) ⊂
u(n(n − 1)/2); the non-trivial part of the lemma consists in proving the S-compatibility of
the equations, i.e. consists in showing that the subspace S is an invariant subspace for the
dynamical system.

The compatibility conditions are the identities

[H(n−i),L(n−i−1)(H (n−i)) + · · · + L(1)(H (n−i))](n−i−1)

= [H(n−i−1),L(n−i−2)(H (n−i−1)) + · · · + L(1)(H (n−i−1))]

for i = 1, . . . , n − 2 . These identities hold because
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[H(n−i),L(n−i−1)(H (n−i)) + · · · + L(1)(H (n−i))]

=







∗
H(n−i−1)

...
∗

∗ · · · ∗ ∗


 ,




0
H(n−i−1)

...
0

0 · · · 0 0


 + · · · +




H(1) 0 · · · 0
0
... 0
0







=




∗
[H(n−i−1),L(n−i−1)(H (n−i−1)) + · · · + L(1)(H (n−i−1))]

...
∗

∗ · · · ∗ 0




=




∗
[H(n−i−1),L(n−i−2)(H (n−i−1)) + · · · + L(1)(H (n−i−1))]

...
∗

∗ · · · ∗ 0


 .

�

Writing a λ-parametric perturbation for equation (EPA′) is very natural. In fact, the
differential equation
H + λ



L(n−1)(In) 0 0

0 L(n−2)(In−1) 0

0 0
. . .







•

=


H + λ



L(n−1)(In) 0 0

0 L(n−2)(In−1) 0

0 0
. . .


 ,L∗




is equivalent to (EPA′). The characteristic polynomial of the λ-dependent matrix


H 0 0
0 H(n−1) 0

0 0
. . .


 + λ



L(n−1)(In) 0 0

0 L(n−2)(In−1) 0

0 0
. . .




is the product of the characteristic polynomials of the matrices H(i) + λL(i−1)(Ii ). The
coefficients of the powers of λ and µ in the characteristic polynomial redundantly give a set
of functions which are those generated by the functions τ i

j . We can conclude by stating

Theorem 1.8. The Hamiltonian system on the manifold On given by the Hamiltonian f can
be written as a λ-parametric Lax equation. Such an equation gives rise to the n(n − 1)/2
integrals of motion that are called the Gelfand–Cetlin system.

Remark. Equation (EPA′) already implies that the eigenvalues of the minors H(i) are integrals
of motion. Having a λ-parametric Lax equation allows one to define a Riemann surface and
to use inverse scattering theory to describe the flow of the system.

2. Global action–angle variables

Given a completely integrable system, the question whether there exist global action–angle
variables gives rise to some remarkable cohomological considerations pertaining to the theory
of obstruction. These cohomology classes have been observed by Nekhoroshev in [15] and
fully described by Duistermaat [6] for the commutative case (d = n) and by Dazord and
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Delzant [4] for the non-commutative case (d > n). A thorough treatment can be found in
[19]; we recall here the main structures that appear.

A completely integrable system (K → M → P) gives rise to a covering of P whose
monodromy, called monodromy of the completely integrable system, is the obstruction to the
existence of global multi-valued action variables (closed 1-forms). If global multi-valued
action variables exist, then the submersion M → P is a principal torus bundle; the Chern
class of this bundle is (of course) the obstruction to the existence of global topological
angle variables. Two other obstructions to global action–angle coordinates are: a family of
1-cohomology classes, related to the exactness of the multi-valued action variables, and, in
the commutative case (d = n), a 2-cohomology class, related to the existence of global angle
variables in which the expression of the symplectic 2-form is as in the theorem on action–angle
variables σ = dϕi ∧ dai.

From proposition 1.1 and lemma 1.2 one deduces that the submersion �µ : O′
n → R

n(n−1)/2

gives rise to a T n(n−1)/2 torus bundle over a space diffeomorphic to (0, 1)n(n−1)/2. Given that
such a space cannot support monodromy nor non-trivial cohomology classes, it follows that
the torus bundle must be trivial, and also that there must exist global circle-valued functions
ϕi

p such that the symplectic structure of O′
n is the closed 2-form dµi

p ∧ dϕi
p.

Remark. The Gelfand–Cetlin system is given as a family of globally defined angle variables;
for this reason we do not need to use the 1-connectedness of the base to state the existence of
global action variables. On the other hand, on the vanishing of the second cohomology group
of (0, 1)n(n−1)/2 we base the claim of the existence of global angle variables.

It is clear that the angle variables must be related to the phases of the entries of a given
matrix H in O′

n. The argument of a complex number cannot be defined at zero; this turns out
to be the main obstacle in defining globally angle coordinates that, on open subsets, can be
easily written.

Lemma 2.1. Let H be a matrix in O′
n, and let vi

p be an eigenvector H(i) associated with the
eigenvalue µi

p, then the last entry of vi
p is non-zero.

Proof. Assume that the ith component of vi
p is zero, then the vector w obtained by vi

p

cancelling the zero is an eigenvalue of H(i−1) with the same eigenvalue of µi
p. This can never

happen for a matrix in O′
n. �

The above lemma implies that one has a preferred choice for the eigenvector vi
p, since it

can be imposed that the eigenvectors have norm 1, with last component real and positive. This
is what we will assume in the rest of this paper.

To give an explicit expression of the Hamiltonian flow of µi
p we need to recall a fact

proved in [8].

Lemma 2.2. Let µ be an eigenvalue of a Hermitian matrix H(i), and let u be a normal
eigenvector associated with µ. If v is the n-dimensional vector (u1, . . . , ui, 0, . . . , 0)t , then

µ(H) = v ⊗ v∗

and hence

etµH = eitv⊗v∗
H eitv⊗v∗

.

In this statement, as in the rest of the paper, we underline a function to indicate its
associated Hamiltonian vector field (as Guillemin and Sternberg in [10]); we use the notation
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of the elementary exponential map to indicate both, the flow of a vector field and the exponential
map from the theory of Lie groups.

Let P ∗
i denote the matrix

(
vi

1, . . . , v
i
i

)
(where the vectors are columns), then

(
Pi 0
0 In−i

)
H

(
P ∗

i 0
0 In−i

)
=




µi
1 0 k1,i+1 · · · k1,n

. . .
...

...
0 µi

i ki,i+1 · · · ki,n

ki+1,1 · · · k1+1,i ki+1,i+1 · · · ki+1,n

...
...

...
...

kn,1 · · · kn,i kn,i+1 · · · kn,n




= K.

The Hamiltonian flow of the function µi
p is

e
tµi

pH =
(

P ∗
i 0

0 In−i

) 
Ip−1 0 0

0 eit 0
0 0 In−p


K


Ip−1 0 0

0 e−it 0
0 0 In−p


(

Pi 0
0 In−i

)
.

Hence, one can read the phases conjugate to the action functions µi
p from the argument of

any non-zero entry in the pth line of the matrix K. This definition is not global since, with the
choice of an entry in the pth row, we have implicitly assumed that this entry is non-zero. The
fact that H belongs to O′

n imposes another condition on the matrix K, namely that the complex
numbers kp,i+1 are never zero. In fact, if kp,i+1 was zero for some p, then the eigenvalue µi

p

would also be an eigenvalue for the matrix H(i+1), and this is forbidden.
We can hence focus our attention to the phases of the complex numbers kp,i+1 and define

ϕi
p = arg(kp,i+1) = arg


(

vi
p

)∗




h1,i+1

...

hi,i+1





 (2)

to be global angle coordinates for the Gelfand–Cetlin system. To conclude the section, we
need to check the commutation relations between the eigenvalues µi

p and the circle-valued
functions ϕi

p and among the angle coordinates themselves.

Lemma 2.3. Let p, q be integers between 1 and i, then{
µi

p, ϕi
q

} = δpq.

The proof of this lemma follows straightforwardly from the definition of angle variables.
The other commutation relations are a little more delicate.

Lemma 2.4. Let i �= j, q an integer between 1 and i and p an integer between 1 and j , then{
µi

p, ϕj
q

} = 0.

Proof. There are two cases that require different treatments. In the first case, i > j , the
computation is easy. In fact, the matrix H(j) does not change along the flow of µi

p; so, also

the eigenvector v
j
q must be constant along the µi

p-flow. The column (h1,j+1 · · · hj,j+1)
t is also

not changed by the flow of µi
p. It hence follows that the function ϕ

j
q commutes with µi

p.
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The second case, i < j , is a little more difficult. In this case, the eigenvalue µ
j
q is of

course constant (it Poisson-commutes with the eigenvalue µi
p) but the eigenvector v

j
q is not

constant. A calculation shows that the evolution of v
j
q along the flow of µi

p is

vj
q

(
e
tµi

p H
) =


P ∗

i


Ip−1 0 0

0 eit 0
0 0 Ii−p


Pi 0

0 Ij−i


 vj

q .

We have the expression of the eigenvector v
j
q along the flow of the action function µi

j .
Let us be more explicit on the form of the column (h1,j+1 · · ·hj,j+1)

t along the flow of the
Hamiltonian µi

p. We hence need to compute the (j + 1)th column of the matrix

(
P ∗

i 0
0 In−i

)




µi
1 k1,i+1 · · · k1,n

. . . 0
...

...
µi

p eit kp,i+1 · · · eit kp,n

0
. . .

...
...

µi
i ki,i+1 · · · ki, n

ki+1,1 · · · e−it ki+1,p · · · ki+1,i ki+1,i+1 · · · ki+1,n

...
...

...
...

...
kn,1 · · · e−it kn,p · · · kn,i kn,i+1 · · · kn,n




(
Pi 0
0 In−i

)

which is the column

(
P ∗

i 0
0 Ij−i

)



k1,j+1

...

eit kp,j+1

...

kj,j+1




.

One can finally compute the derivative of ϕ
j
q along the vector field µi

p,

arg




(
vj

q

)∗


P ∗

i


Ip−1 0 0

0 e−it 0
0 0 Ii−p


 Pi 0

0 Ij−i




(
P ∗

i 0
0 Ij−i

)



k1,j+1

...

eit kp,j+1

...

kj,j+1







= arg




(
vj

q

)∗


P ∗

i


Ip−1 0 0

0 e−it 0
0 0 Ii−p


 0

0 Ij−i







k1,j+1

...

eit kp,j+1

...

kj,j+1







and obtain their constancy. �
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Remark. The commutation relations so far proved imply that the functions ϕi
p are linearly

independent at every point of O′
n.

The last fact to check is that the functions ϕi
p Poisson-commute. Following the ideas

in [8], we need to prove that the restriction of the symplectic form of O′
n to the level set

L = {
ϕi

p = 0, i = 1, . . . , n − 1, p = 1, . . . , i
}

is zero. To prove this we need a lemma.

Lemma 2.5. The manifold L is the set of matrices of O′
n with real entries.

Proof. Let H be a real Hermitian matrix, then H is a symmetric real matrix and its eigenvectors
vi

p have real entries. It follows that the angle functions ϕi
p(H) are all equal to 1.

Conversely, let H be a matrix in O′
n such that ϕi

p(H) = 1 for all i and p. The angle ϕ1
1(H)

is 1 if and only if the entry h1,2 of H is real; it follows that the eigenvectors v2
1 and v2

2 of H(2)

have real entries. The angles ϕ2
1(H) and ϕ2

2(H) are 1 if and only if the vector (h1,3, h2,3)
t is a

real-coefficient combination of the vectors v2
1, v

2
2 , and hence has real entries. Iteration of this

argument proves that H must be a matrix with real coefficients. �

Proposition 2.6. The sub-manifold L is a Lagrangian manifold of O′
n.

Proof. The vectors tangent to L at one of its points H are only and all the vectors adXH =
[X,H ] with X a real anti-symmetric matrix. Using the expression for the symplectic form given
in section 1.2, one obtains that σH(adX,H, adY H) = i Tr(H [X,Y ]) = Tr(YHX)−Tr(XHY).
But (YHX)t = XtH tY t = XHY , and this proves that the manifold L is Lagrangian. �

Remark. Hausmann and Knutson [12] wrote an isomorphism between the symplectic
reduction of a regular coadjoint orbit by the Horn–Schur T n−1-action and a subspace of
Flaschka and Millson’s polygon space. This isomorphism identifies the action functions of
the Gelfand–Cetlin system with the action functions of the bending flow (the length of some
of the diagonals of the polygon). The same isomorphism identifies the angle functions we just
described with the four-point formula in [8].

3. The superintegrable Gelfand–Cetlin system: some cohomology

The definition of a superintegrable Gelfand–Cetlin system appears implicitly in the work of
Guillemin and Sternberg. In fact, in [11] the authors show that the Gelfand–Cetlin system can
be obtained using a recursion; the first step of this recursion amounts to observing the existence
of a non-commutative completely integrable system in On. The fibres of this integrable system
are tori of dimension n − 1, while the base of the bundle is the direct product of n − 1 action
variables and a regular U(n − 1)-coadjoint orbit On−1. The recursion proceeds by obtaining
n − 2 commuting functions defined on On−1.

The completely integrable system which we are about to describe is the first step in
Guillemin and Sternberg’s recursion, and is a non-commutative completely integrable system
which presents a non-vanishing Chern class.

The symplectic manifoldOn, being a U(n)-coadjoint orbit, is a homogeneousU(n)-space.
The group U(n− 1) can be embedded in U(n) as the set of unitary transformations that fix the
last basis vector (once a basis is fixed); hence, the space On is endowed with a Hamiltonian
U(n−1)-action. The momentum map associated with such action is the projectionOn ⊂ iu(n)

in iu(n − 1) obtained by cancelling the last row and column of a matrix H in On

On
π−→ iu(n − 1) H 
→ H(n−1).

This map is a Poisson morphism.
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The restriction of π to the set of its regular points is a T n−1 fibration over an open set
of the Poisson manifold iu(n − 1) and defines a completely integrable system. We begin the
investigation of this completely integrable system by first describing the Poisson manifold
which is the base of the submersion.

Proposition 3.1. The image of the map π is the set
{
K ∈ u∗(n − 1)

∣∣µn−1
i (K) ∈ [µi, µi+1]

}
.

The critical values of π are given by the equations µn−1
i = µi and µn−1

i = µi+1.

Proof. Given a Hamiltonian group action, the rank of the momentum map at a point is the
dimension of the orbit through that point. Let H be a Hermitian matrix, and let P ∈ U(n − 1)

be such that PH(n−1)P ∗ is diagonal. The matrices of U(n − 1) that stabilize H(n−1) are(
PT n−1P ∗ 0

0 1

)
.

Hence, if

H =
(

H(n−1) h

h∗ a

)
the pre-image of H(n−1) is an (n − 1)-torus if and only if Ph is a vector with non-vanishing
entries. But Ph has non-vanishing entries if and only if some of the eigenvalues of H(n−1) are
eigenvalues of H. �

Let O′′
n be the set of regular points for π ; it can be shown that O′′

n is connected and it is
obvious that the image P = π(O′′

n) is an open set of iu(n − 1). The open set P, as any open
subset of iureg(n), inherits a regular Poisson structure of rank (n − 1)(n − 2), and is a trivial
bundle over an action space which is precisely the intersection of P with a Weyl chamber of
iu(n − 1). This space is the set A = (µ1, µ2) × · · · × (µn−1, µn). The diagram

(T n−1 →)O′′
n → P(→ A)

defines a non-commutatively completely integrable system. Also in this case the existence of
globally defined action functions implies the vanishing of the monodromy of this system, i.e.
the principality of the torus bundle. On the other hand, the Poisson manifold P has non-trivial
second cohomology group, and can hence support obstructions to global angle variables–a
Chern class.

We will compute the Chern class as it is defined in [5]. The Chern class is the obstruction
to the existence of a section of a principal torus bundle. One can try to build such a section
by CW-decomposing the base manifold, defining a section above the 0-cells, extending it
consistently over the 1-cells, and so on with higher dimensional cells. When dealing with a
T n−1-bundle, the first (and only) obstruction appears when trying to extend the section to the
2-cells, and is a map from such 2-cells to the fundamental group of the torus Z

n−1.
In our specific case, the base manifold retracts on the manifold On−1, and there is a

natural CW-decomposition of the manifold On−1, known as Bruhat decomposition. This
decomposition has only even cells: the 0-cell is a chosen point K0 of On−1, the 2-cells are
obtained by conjugating the point K0 by matrices of the form


Ii−1 0 0 0

0 s(z) c(z) 0
0 −c(z) s̄(z) 0
0 0 0 In−i−2




with s(z) = z/
√

1 + |z|2 and c(z) = 1/
√

1 + |z|2. More generally, the 2p-cells are obtained
by conjugating K0 by appropriate products of matrices of the above form. This choice of
parameters for the Bruhat cells can be found in [13].
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Choosing

H0 =




µn−1
1 0 h1

. . .
...

0 µn−1
n−1 hn−1

h∗
1 · · · h∗

n−1 hn,n




as the section above the base point K0 = H
(n−1)
0 in iu(n − 1), one has that a basis of the

fundamental group of the fibre above K0 is generated by the paths

γi(t) =

Ii−1 0 0

0 eit 0
0 0 In−i


H0


Ii−1 0 0

0 e−it 0
0 0 In−i




and the 2-cell σ1 is parametrized by

z 
→




|s(z)|2µn−1
1 + c2(z)µn−1

2 c(z)s(z)
(
µn−1

2 − µn−1
1

)
0 · · · 0

c(z)s̄(z)
(
µn−1

2 − µn−1
1

) |s(z)|2µn−1
2 + c2(z)µn−1

1 0 · · · 0
0 0 µn−1

3 0
...

...
. . .

0 0 0 µn−1
n−1




with z a complex number.

Proposition 3.2. The Chern class of the Gelfand–Cetlin non-commutative system is the
cocycle that associates to the Bruhat 2-cells σi, i = 1, . . . , n − 2, the cycles γi − γi+1.

Proof. All we need to do is to compute a section above the 2-cell σ1; in fact, the expression of
a section above the other 2-cells is very similar. By conjugating the matrix H0 by the matrix

 s(z) c(z) 0
−c(z) s̄(z) 0

0 0 In−2




one writes a natural section above the cell σ1,


|s(z)|2µn−1
1 + c(z)2µn−1

2 s(z)c(z)
(
µn−1

2 − µn−1
1

)
s(z)h1 + c(z)h2

c(z)s̄(z)
(
µn−1

2 − µn−1
1

) |s(z)|2µn−1
2 + c(z)2µn−1

1 s̄(z)h2 − c(z)h1
. . .

...

s̄(z)h̄1 + c(z)h̄2 s(z)h̄2 − c(z)h̄1 · · · hn,n


.

Letting z = eiϕρ and ρ tend to infinity, the given section draws the cycle γ1 − γ2. �

The non-vanishing of the Chern class can also be proved using a different argument. In
[4], Dazord and Delzant have proved that the Chern class of a completely integrable system
maps in the characteristic class form of the base Poisson manifold. But, the characteristic
class form of any Ad∗

G-invariant open set of g∗
reg is non-zero if G is semisimple, hence the

Chern class cannot vanish. For the definition of characteristic class form and for a sketch of
the proof that the characteristic class form of the dual of a semisimple Lie algebra does not
vanish, we refer to the book [19].
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